skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McMillan, W_Owen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Synopsis Ectothermic species in lowland tropical forests have evolved in historically stable climates, leading to the prediction that transcriptomic and phenotypic plasticity do not play major roles in their responses to changes in environmental temperature. However, these species are often thermoconformers and are therefore exposed to short-term temporal fluctuations in temperature. Hence, transcriptomic plasticity in tropical forest ectotherms might replace behavioral thermoregulation as a mechanism to buffer against thermal stress. In particular, upregulation of heat shock proteins can occur during thermal stress in a range of organisms. However, while many studies have explored gene expression plasticity in response to heat stress in model organisms, little is known about transcriptomic plasticity in the tropical, non-model species that will be the most impacted by climate change. We studied the effects of moderate and severe acute heat stress events in the Panamanian slender anole (Anolis apletophallus) to gain insight into a mechanism that might allow tropical ectotherms to withstand the heat waves that are likely to rise in frequency over the coming decades under anthropogenic climate change. We found that multiple genes were upregulated across several heat shock protein networks in three tissues, and the magnitude of the expression response was similar irrespective of whether heat stress was moderate or severe. Overall, our results indicate a potentially crucial role for heat shock protein networks in the ability of tropical ectotherms to resist the negative effects of rising temperatures. 
    more » « less